SECAR® 41 – A NEW CALCIUM ALUMINATE CEMENT FOR REGULAR AND INSULATING CASTABLES

C. Wöhrmeyer, C. Parr, P. Gudovskikh

Kerneos SA, Paris, France, christoph.wohrmeyer@kerneos.com - www.secar.net

Presented at XIII. International Conference "Refractory materials: Manufacturing, methods of testing, application in metallurgical processes", 19-22nd May 2009, Wisla, Poland
Abstract

Regular and insulating castables for application temperatures of 1000 to 1500°C are often formulated with Calcium Aluminate Cements containing either 40% Al₂O₃ for example, CIMENT FONDU® (“CF”) or 50% Al₂O₃ as SECAR® 51 (“S51”). While CF is frequently used in insulating concretes together with Vermiculite or Perlite, S51 is often the preferred choice for dense regular castables with good fluidity and high abrasion resistance. It exhibits as well excellent dry-gunning properties. S51 has a low water demand and gives high strength due to its mineralogical composition. It allows application temperatures up to 1500°C when aggregates with an adequate temperature resistance are used. CF focuses more on the lower temperature application and offers a very good usage value for very cement rich mixes like insulating castables based on Vermiculite, Perlite and light weight fireclay.

This paper will discuss the introduction of SECAR® 41 (“S41”) into the family of SECAR® calcium aluminates in Europe. SECAR® 41, a fused calcium aluminate cement with 46% Al₂O₃, already successfully used in the American refractory industry for many years, combines the low water demand of SECAR® 51 with a superior refractoriness compared to CF. It allows improving the rheology and temperature resistance compared to CF-based light weight and dense castables. Where S51 was chosen for its superior flow property and abrasion resistance compared to CF, S41 offers an excellent alternative with an adapted cost/performance-ratio. Compared to CF, S41 gives for example a 30-40 K higher application temperature when combined with fireclay. This brings more furnace security in case that overheating occurs unexpectedly. Due to the optimised mineralogy of S41 it exhibits a higher hydraulic potential than CF. SECAR® 41 has the potential to improve insulating castables either by increased strength at constant density or by better insulating properties through density reduction without compromising the strength level. These unique properties of SECAR® 41 make it an all-round hydraulic binder for dense and insulating castables with application temperature of 1350°C which shall be installed either by vibro-casting, dry-gunning or traditional rodding methods.
1 Introduction

Since calcium aluminate cement (CAC) is a major component of regular dense and especially insulating castables, it plays a major role for the usage value of these monolithics. SECAR® 41 was introduced to the North American market some years ago in response for the refractory industry’s requirement for a low range calcium aluminate cement with a lower iron content than CIMENT FONDU®. This cement, containing 7% iron oxide, has also found applications in the civil and construction chemistry industry due to its more fluid rheology and longer open times as compared to CIMENT FONDU®, while still retaining the very rapid hardening properties known to calcium aluminate cements.

In the European monolithics market mainly 40% Al₂O₃ containing CAC with about 15% Fe₂O₃ like CIMENT FONDU® (“CF”) and low iron containing 50% Al₂O₃ containing CAC with ca. 2% Fe₂O₃ like SECAR® 51 (“S51”) have been used so far in regular castables together with fireclay or insulating natural aggregates since many years. But the experiences from the American refractory market with the 46% Al₂O₃ containing cement SECAR® 41 (“S41”) have confirmed that cost/performance-optimisation is achievable for the mid temperature range regular castables when all 3 cements, CF, S41, and S51 are available and their usage values are fully exploited in the different castable systems. Examples for application properties will be shown in the following. A dense fireclay castable and an insulating mix based on vermiculite have been chosen as model systems to demonstrate the different effects achievable by the 3 CAC.

2 Calcium Aluminate Cement Characteristics

S41 is from chemical point of view an intermediate calcium aluminate cement between S51 and CF. While CaO- and SiO₂-content are almost on the same level for all three cements, the main difference is coming from the Al₂O₃/Fe₂O₃-ratio. S41 contains about 46% Al₂O₃ and 7% Fe₂O₃. CF has 40% Al₂O₃ only, compensated by a higher Fe₂O₃ content of about 15%, while S51 is more pure with its 51% Al₂O₃ and only 2% Fe₂O₃. All chemical components (Fig. 1) are combined in mineralogical multi-oxide phases. Therein the calcium mono-aluminate plays the most prominent role due to its hydraulic potential. In all three of these CAC the CaAl₂O₄-phase is present as the major phase with a content of more than 50%.
The 3 cements are made by grinding of pure fused clinker to a specific surface area (Blaine) of 4000 cm2/g for S51, 3400 cm2/g for S41 and 3000 cm2/g for CF. With its physical, chemical and mineralogical composition S41 reaches almost the same high hydraulic potential and low water demand as S51, and both superior to CF. That brings castable rheology, binding properties, and strength level of S41 almost up to the level of S51 and allows higher temperature resistance compared to CF. Using the pyrometric cone method on neat cement pastes the temperature resistance of S41 has been found 35K higher than of CF which gives security to above than 1300°C (Fig. 2). The iron oxide content of 7% is the only limitation for S41 compared to S51 with respect to temperature resistance and performance in reducing atmospheres, fields where S51 shows superior performance.
3 Castable test methods

Castable test methods like flow under vibration, and physical properties as bulk density, permanent linear changes and strength have been determined. Samples have been prepared by casting into moulds under vibration in case of the dense castable and slightly rodding in case of the Vermiculte mix, which has been adjusted to an almost selfflowing consistency. After curing at 20°C and >90% relative humidity during 24h samples have been dried at 110°C for another 24h before they have been fired with holding times of 6h at the specified temperatures. Furthermore the castable hardening process has been followed by the ultrasonic method as described in [1]. The CAC hydration process has also been analysed by registering the temperature evolution over time as described in [2]. The following model recipes have been chosen to study the characteristics of the 3 different CAC:

A light weight castable castable (LW) is based on pre-expanded vermiculite and uses 60% by weight of CAC. Mixed with 120-125 mass-% water and installed by casting without any vibration, only little rodding, it results typically in a castable bulk density of ca. 500-600 kg/m³ after drying at 110°C. The dense castable (DC) uses Mulcoa®47 as aggregate and 25 mass-% CAC as binder. Water addition has been adjusted here in a first series to 9% for all CAC and also to 8% in case of SECAR® 41 which brings it to the same initial fluidity as CIMENT FONDU® with 9% water. Bulk densities of typically 2350 kg/m³ after drying have been achieved here.

Tab. 1: Light weight (LW) and dense castable (DC) model model recipes

<table>
<thead>
<tr>
<th>Light weight (LW) castable</th>
<th>Dense castable (DC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LW-CF</td>
</tr>
<tr>
<td>Vermiculite 0-2 mm</td>
<td>30</td>
</tr>
<tr>
<td>Plastic clay</td>
<td>10</td>
</tr>
<tr>
<td>Fireclay 0-6 mm</td>
<td>75</td>
</tr>
<tr>
<td>CAC CF</td>
<td>60</td>
</tr>
<tr>
<td>CAC S41</td>
<td>125</td>
</tr>
<tr>
<td>H2O</td>
<td></td>
</tr>
</tbody>
</table>

4 Test results

- Dense castable

Compared to CF lower water demand has been achieved with S41 and S51. Mixed with 9% water the dense fireclay castable shows significant higher initial flow values with S41 and S51 than with CF. DC-S41 mixed with only 8% water exhibits equal flow as DC-CF with 9% water (Fig. 3). Flow decays already during the first 30 min for CF while S41 and S51 create a more stable flow during this period (Fig. 4) which gives enough time to install the castable properly. With S51 and S41 a longer open time can be achieved before they start to set which gives more flexibility during installation of the S41 and S51 based products since unforeseen interruptions for example due to machine problems or other technical aspects may happen at the job side. CF is progressively losing its fluidity right after castable mixing which makes casting installation of dense concretes more complicated since vibration time should be adapted to the changing fluidity of the castable in order to achieve constant degree of compaction during the installation period.
The castable stiffening and hardening period has been studied with the ultrasonic method. The strong velocity increase of the ultrasonic signal which passes through the sample indicates the stiffening of the castable to a level where it loses completely its fluidity. This is the case after 180 minutes for CF, 200 minutes for S51 and 280 minutes in case of S41 (Fig. 5). Soon after stiffening the massive cement hydration starts as can be observed by the exothermic heat development in the castables which brings their temperatures up to 42 to 47°C (Fig. 6). In all cases the massive hydration is completed after less than 10 hours so that de-moulding can be started without problems. CF stiffens quite quickly due to its minor phase content which also trigger the massive precipitation of hydrates and rapid gain in strength.
9% water. Bulk density remained at the same level for all mixes with 9% water and increased only marginal by 2% for S41 with 8% water due to the lower porosity as consequence of the reduced amount of mixing water. At 9% water S41 is the cement which creates the lowest shrinkage after firing compared to the dried prisms. The water reduction from 9 to 8% for S41 further reduced the shrinkage at 1100°C. This tendency becomes even more dominant after heating at 1350°C where CF shows the biggest shrinkage followed by S41 (9% H2O) while S41 at 8% H2O and S51 remain almost stable (Fig. 8).

The ratio between CCS and CMOR increases significantly for DC-CF after heating to 1350°C compared to the other mixes (Fig. 9). This indicates that some liquid might have occurred already at this temperature in case of CF which has modified the microstructure. Since this liquid solidifies during cooling of the sample the measured CCS is here not representative anymore for the performance of the CF-based castable and can’t be taken into account to qualify that mix. The castables based on S41 and S51 show still normal behaviour with little or no liquid formation at 1350°C.

![Fig. 7: Strength, bulk density, and permanent linear change of dense fireclay castable with 3 different CAC after pre-firing at 800 and 1100°C. S41 tested with 9 and 8% mixing water.](image)

![Fig. 8: Permanent linear change after heating at 1350°C for dense castable](image)
The light weight concretes have been mixed after adding 125 wt.-% of water to the dry mix (LW-S51 and LW-CF). LW-S41 was mixed with 120% water only since the mix was already very liquid with 125% and bleeding started to occur. After about 3 to 4 hours all castables start to set and cement hydration brings the castable temperature up to 47°C for CF while S41 and S51 remain at 32-33°C. The peak occurs after 5 to 6 h in all cases (Fig. 10). Since in case of CF the temperature raises higher, the cement hydrates might have been converted already in this case from CAH₁₀ and C₂AH₆ into C₃AH₆ and AH₃ [3]. Furthermore the higher temperature bears the risk that water might evaporate too quickly from the concrete structure on the job side, while during the lab test samples have been cured at >90% humidity to limit this risk. If too much water would evaporate not enough would remain available in the concrete for a complete cement hydration and optimal strength formation.

The bulk densities of the 3 light weight mixes are in the range of 560 to 590 kg/m³ after drying at 110°C with the lowest for S51 and the highest for CF. Contrary to the bulk density the strength was found at highest level for S51 with S41 being intermediate. The lowest strength was measured for CF despite the slightly higher density. Here the mineralogy and the hydraulic power of the different CAC with their specific hydration paths play a more important role than purely the density.

SECAR® 41, which has an intermediate chemistry between CIMENT FONDU® on one hand and SECAR® 51 on the other, offers a rheological performance and a hydraulic potential which is much closer to S51 than to CF. The temperature resistance of SECAR® 41 is about 35 K superior to CIMENT FONDU®. This is achieved by an increased Al₂O₃ and a reduced Fe₂O₃ content compared to CF. Applied in a dense fireclay concrete, SECAR® 41 offers more flexibility during castable installation with its stable rheology.
and an open time similar to SECAR® 51. Compared to CF it also gives a higher fluidity at equal water addition. Reducing the mixing water to a level where equal initial flow for S41 and CF is achieved a significant higher strength was observed with S41 compared to CF. With these properties SECAR® 41 reaches almost the same performance as SECAR® 51, which is also known for its excellent gunning behaviour. However SECAR® 51 is the preferred cement when temperatures are relatively high and when lower iron oxide content is required for more reducing furnace atmospheres. Applied in Vermiculite light weight castables the hydraulic behaviour of SECAR® 41 is once again almost identical to SECAR® 51 and strength is significantly higher than with CIMENT FONDU®. Nevertheless the strength of S41 in this system is intermediate between CF and S51. All together SECAR® 41 is an excellent all-round calcium aluminate cement for medium temperature application. It combines the stable rheological features from SECAR® 51 with an increased temperature resistance and a lower iron oxide content compared to CIMENT FONDU®. SECAR® 41, together with CIMENT FONDU® and SECAR® 51 help refractory castable formulators to optimise the cost/performance ratio in all segments of regular castables as the experience from the North American market has shown already. This advantage can now also be exploited by the refractory market in Europe and beyond.

6 References

